top of page
Cover.jpg




114. Samore et al. 2024. Accordance and conflict between religious and scientific precautions against COVID-19 in 27 societies. Religion, Brain & Behavior. https://doi.org/10.1080/2153599X.2024.2363757


113. Méndez-López et al. 2024. Metabolism and immune memory in invertebrates: are they dissociated?  https://doi.org/10.3389/fimmu.2024.1379471

112. Diaz et al. 2024. Honey bee protein and lipid nutrition in avocado and blueberry agroecosystems with conventional and organic management. Arthropod-Plant Interactions. https://doi.org/10.1007/s11829-024-10078-1

111. Mendoza-Diaz de León et al. 2024. Lie to me to lay with me: females deceive males via terminal investment. PLoS ONE. 19. https://doi.org/10.1371/journal.pone.0301942


110. Groyecka-Bernard et al. 2024. Conservatism Negatively Predicts Creativity: A Study Across 28 Countries. Journal of Cross-Cultural Psychology. https://doi.org/10.1177/00220221241238321 

109. Lanz-Mendoza et al. 2024. The plasticity of immune memory in invertebrates. Journal of Experimental Biology. S1. https://doi.org/10.1242/jeb.246158


108. Trejo-Meléndez & Contreras-Garduño 2024. To live free or being a parasite: The optimal foraging behavior may favor the evolution of entomopathogenic nematodes. PLoS One. https://doi.org/10.1371/journal.pone.0298400

107. Trejo-Meléndez et al. 2024. The evolution of entomopathogeny in nematodes. Ecology and Evolution. 10.1002/ece3.10966
 
106. Croy et al. 2024. COVID-19 and social distancing: A cross-cultural study of Interpersonal distance preferences and touch behaviors before and during the pandemic. https://doi.org/10.1177/1069397123117

105. Cordero-Molina et al. 2024. Neural mechanisms involved in female mate choice
in invertebrates. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2023.1291635.

104. Cordero-Molina et al. 2024.
 Exploring the males’ terminal investment strategy: Impact of the dose of stress and the time-lapse between stress and mating. Ecological Entomology. 49: 21-30. https://doi.org/10.1111/een.13275

103. García Bucio et al. 2023. Incubation in shaded hatcheries biases sex-determination but preserves Lepidochelys olivacea hatchling physiology. Marine Environmental Research. 10.1016/j.marenvres.2023.106244

102. Marino et al. 2023. Genomics of the relict species Baronia brevicornis sheds light on its demographic history and genome size evolution across swallowtail butterflies. Genes Genomes Genetics. https://doi.org/10.1093/g3journal/jkad239

101. Vargas-Vargas et al. 2023. Evidence of long-term allocentric spatial memory in the terrestrial hermit crab Coenobita compressus. PLoS ONE. 10.1371/journal.pone.0293358

100. Contreras-Garduño et al. 2023. The immune response of the whitefly
Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) when parasitized by Eretmocerus eremicus (Hymenoptera: Aphelinidae). PLoS One. https://doi.org/10.1371/journal.pone.0296157

99. Diaz et al. 2023. Alterations in plant-soil-bee multitrophic interactions after fungicide soil application. Rhizosphere. https://doi.org/10.1016/j.rhisph.2023.100735

98. Hernández-Villanueva et al. 2023
. The females’ response to male attractiveness: mate choice, larvae production and differential brain protein expression. Ethology. https://doi.org/10.1111/eth.13389
 
97. Krama et al. 2023. Development under predation risk increases serotonin-signaling, variability of turning behavior and survival in adult fruit flies Drosophila melanogaster. Frontiers in Behavioral Neuroscience. https://doi.org/10.3389/fnbeh.2023.1189301

96. Sorokowska et al. 2023. Love and affectionate touch toward romantic partners all over the world. Scientific Reports. https://doi.org/10.1038/s41598-023-31502-1

95. Samore et al. 2023. Greater traditionalism predicts COVID-19 precautionary behaviors across 27 societies. Scientific Reports. https://doi.org/10.1038/s41598-023-29655-0

94. Trejo-Meléndez et al. 2023. The coincidental evolution of virulence partially explains the virulence in a generalist entomopathogenic. Acta Parasitologica. https://doi.org/10.1007/s11686-023-00663-4


93. Amaro-Sánchez et al. 2023. Effect of juvenile hormone on phenoloxidase and hemocyte number: The role of age, sex, and immune challenge. Comparative Biochemistry and Physiology, Part B. https://doi.org/10.1016/j.cbpb.2023.110827

92. Sorokowski et al. 2023. Modernization, collectivism, and gender equality predict love experiences in 45 countries. Scientific Reports. https://doi.org/10.1038/s41598-022-26663-4

91. Burciaga et al. 2022. The honey bees immune memory. Developmental & Comparative Immunology. https://doi.org/10.1016/j.dci.2022.104528.


90. Kowal et al. 2022. Predictors of enhancing human physical attractiveness: Data from 93 countries. Evolution and Human Behavior. https://doi.org/10.1016/j.evolhumbehav.2022.08.003

89. Quesada et al. 2022. Survival, body condition and immune system of Apis mellifera liguistica fed avocado, maize and polyfloral pollen diet. Neotropical Entomology. 51: 583-592. DOI: 10.1007/s13744-022-00974-7

88. Carmona-Peña et al. 2022. Benefits and costs of immune memory in Rhodnius prolixus against Trypanosoma cruzi. Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2022.105505 

87. Borráz-León et al. 2022. Are Toxoplasma-infected subjects more attractive, symmetrical, or healthier than non-infected ones? Evidence from subjective and objective measurements. Peer J. 
10:e13122  https://doi.org/10.7717/peerj.13122


86. Krams et al. 2022. Physiological stress and higher reproductive success in bumblebees are both associated with intensive agriculture. Peer J. 10:e12953 https://doi.org/10.7717/peerj.12953

85. Krams et al. 2022. Dominance of Fructose-Associated Fructobacillus in the Gut Microbiome of Bumblebees (Bombus terrestris) Inhabiting Natural Forest Meadows. Insects. DOI: 10.3390/insects13010098

84. Lanz-Mendoza & Contreras-Garduño 2021. Innate immune memory in invertebrates: Concept and potential mechanisms.  Developmental and Comparative Immunology. 127:104285. 10.1016/j.dci.2021.104285

83. Krams et al. 2021.  Ecological stoichiometry of bumblebee castes, sexes and age groups. Frontiers in Physiology. 12: 696689. https://doi.org/10.3389/fphys.2021.696689

82. Galicia-Mendoza et al. 2021.  Biology of the oldest butterfly species in the world, Baronia brevicornis: food, abundance, polymorphism and survival. Revista Mexicana de Biodiversidad. e923503. http://dx.doi.org/10.22201/ib.20078706e.2021.92.3503 

81. Butterfield et al. 2021. Morphology of the limb, shell and head explain the variation in performance and ecology across 14 turtle taxa (12 species). Biological Journal of the Linnean Society. https://doi.org/10.1093/biolinnean/blab117

80. Carmona-Peña et al. 2021. The innate immune response of triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an unresolved question: do triatomines have immune memory? Acta Tropica. https://doi.org/10.1016/j.actatropica.2021.106108

79. Borráz-León et al. 2021. Self-perceived facial attractiveness, fluctuating asymmetry, and minor ailments predict mental health outcomes. Adaptive Human Behavior and Physiology. https://doi.org/10.1007/s40750-021-00172-6
 
78. Walter et al. 2021.  Sex differences in human mate preferences vary across sex ratios. Proceedings of the Royal Society B. https://doi.org/10.1098/rspb.2021.1115

77. Luoto et al. 2021. Socieconomic position, immune function, and its physiological markers. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2021.105202

76. Sorokowska et al. 2021. Affective international touch in close relationships: A cross-cultural perspective. Personality and Social Psychology Bulletin. https://doi.org/10.1177/0146167220988373

75. Méndez-López et al. 2021. Do entomopathogenic nematodes induce immune priming? Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2021.104844

74.   Lara-Reyes et al. 2021. Insect immune evasion by dauer and non-dauer entomopatogenic nematodes. Journal of Parasitology. 107: 115-124. https://doi.org/10.1645/20-61

73.    Borráz-León et al. 2021. Toxoplasma gondii and psychopathology: Latent infection is associated with interpersonal sensitivity, psychoticism, and higher testosterone levels in men, but not in women. Adaptive Human Behavior and Physiology. 7: 28-42. https://doi.org/10.1007/s40750-020-00160-2

72.    Ruiz-Guzman et al. 2021. Interactions between oxidative stress and attractiveness to mates and individual mate choice in the beetle Tenebrio molitor. Ethology.  127: 109-116https://doi.org/10.1111/eth.13108

71.    Krams. et al. 2021. Spider odors induce stoichiometric changes in fruit fly Drosophila melanogaster. Current Zoology. 67: 127-129. https://doi.org/10.1093/cz/zoaa070 

70.    Rantala et al. 2020. Effect of Juvenile Hormone on resistance against entomopathogenic fungus Metharizium robertsii differs between sexes. Journal of Fungi. 6: 298. 10.3390/jof6040298 

69.   Sorokowski et al. 2020. Universality of the triangular theory of love: Adaptation and psychometric properties of the triangular love scale in 25 Countries. Journal of Sex Research. 58: 106-115. https://doi.org/10.1080/00224499.2020.1787318

68.    Rubika A. et al. 2020. Womens socioeconomic position in ontogeny is associated with improved immune function and lover stress, but not height. Scientific Reports. https://doi.org/10.1038/s41598-020-68217-6

67. Krams et al. 2020. Developmental speed affects ecological stoichiometry and adult fat reserves in Drosophila melanogaster. Animal Biology. 71: 1-20. https://doi.org/10.1163/15707563-bja10043

66.    Nicoletti M. et al. 2020. Physiological costs in monarch butterflies due to forest cover and visitors. Ecological Indicators 117. https://doi.org/10.1016/j.ecolind.2020.106592
                                              
65.    Kowal et al. 2020. Reasons for facebook usage: Data from 46 countries. Frontiers in psychology 11.711. https://doi.org/10.3389/fpsyg.2020.00711

64.    Walter et al. 2020. Sex differences in mate preferences across 45 Countries: A large-scale replication. Psychological Science. 31: 408-423. https://doi.org/10.1177/0956797620904154

63.    Juárez-Hernández et. al. 2020. Hidden costs in the physiology of Argia anceps (Zygoptera: Coenagrionidae) due to pollution. Neotropical Entomology. 49: 227-233. https://doi.org/10.1007/s13744-019-00737-x

62.    Contreras-Garduño et al. 2019. The cost of immune priming within generations. The Science of Nature. 106: 59. https://doi.org/10.1007/s00114-019-1657-2

61.    Conroy-Beam et. al. 2019. Contrasting computational models of mate preference integration across 45 countries. Scientific reports, 9:16885. https://doi.org/10.1038/s41598-019-52748-8

60.    Borráz-León J. et al. 2019. Low intrasexual competitiveness and decreasing testosterone in human males (Homo sapiens): The adaptive meaning. Behaviour. 157(1): 1-15.   https://doi.org/10.1163/1568539X-00003578

59.    Dean-Conroy et al. 2019. Assortative mating and the evolution of desirability covariation. Evolution and Human Evolution. 40(5):479-491. https://doi.org/10.1016/j.evolhumbehav.2019.06.003

58.    Martínez-Lendech N. et al. 2019. Does juvenile hormone prompt males to oxidative stress? Journal of Experimental Biology. 222. https://doi.org/10.1242/jeb.194530

57.    Trakimas et al. 2019. Ecological Stoichiometry: A link between developmental speed and physiological stress in an omnivorous insect. Frontiers in behavioral neuroscience.  13:42. https://doi.org/10.3389/fnbeh.2019.00042

56.    Marcinkowska U. et al. 2019. Women’s preferences for men’s facial masculinity are strongest under favorable ecological conditions. Scientific Reports. 9:3387. https://doi.org/10.1038/s41598-019-39350-8

55.    Medina Gómez H. et al. 2018. Pathogen-produced catalase affects immune priming: A potential pathogen strategy. Microbial Pathogenesis. 125: 93-95. https://doi.org/10.1016/j.micpath.2018.09.012
 
54.    Canales-Lazcano J., Contreras-Garduño J. & Cordero C. 2019. Strategic adjustment of copulatory plug size in a nematode. Current Zoology. 65(5):571-577. https://doi.org/10.1093/cz/zoy067

53.    Lanz H. & Contreras-Garduño J. 2018. Insect innate immune memory. In advances in comparative immunology. Ed.: Edwin Cooper. Springer. pags: 193-211. doi: 10.1007/978-3-319-76768-0_9

52.    Medina Gómez H. et al. 2018. The occurrence of immune priming can be species-specific in entomopathogens. Microbial Pathogenesis. 118: 361-364. https://doi.org/10.1016/j.micpath.2018.03.063

51.    Martínez-Lendech N.,  Golab, M.,  Osorio-Beristain M. & Contreras-Garduño,  J. 2018. Sexual signals reveal males’ oxidative stress defenses: testing the hypothesis in an invertebrate. Functional Ecology.  32(4): 937-947. https://doi.org/10.1111/1365-2435.13051

50.    Krams I. et al. 2017. Food quality affects the expression of antimicrobial peptide genes upon simulated parasite attack in the larvae of greater wax moth. Entomologia Experimentalis et Applicata. 165(2-3):  129-137. https://doi.org/10.1111/eea.12629

49.    Krams I. et al. 2017. Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. Journal of Experimental Biology. 220: 4204-4212. https://doi.org/10.1242/jeb.169227

48.    Castro-Vargas C. et al. 2017. Methylation on RNA: a potential mechanism related to immune priming within but not across generations. Frontiers in Microbiology. 8, 473. https://doi.org/10.3389/fmicb.2017.00473

47.    Arriaga-Osnaya B. et al. 2017. Are body size and volatile blends honest signals in orchid bees? Ecology and Evolution. 7(9): 3037–3045. https://doi.org/10.1002/ece3.2903
 
46.    Golab M.J. et al. 2017. The effects of habitat deterioration and social status on patrolling behavior in the territorial damselfly Calopteryx splenden. Polish Journal of Ecology. 65(1):122-131. https://doi.org/10.3161/15052249PJE2017.65.1.011

45.    Ruiz Guzman G. et al. 2016. Costs and benefits of vertical and horizontal transmission of Dengue virus by Aedes aegypti. Journal of Experimental Biology. 219: 3665-3669. https://doi.org/10.1242/jeb.145102

44.  Covarrubias-Camarillo T. et al. 2016. Baronia brevicornis caterpillars build shelters to avoid predation. Journal of Natural History. 50(35-36): 2299-2310. https://doi.org/10.1080/00222933.2016.1193640

43.  Jiménez-Cortés J.G. et al. 2016. Microbiota from Rhabditis regina may alter nematode enthomopathogenicity. Parasitology Research. 115(11): 4153-4165. https://doi.org/10.1007/s00436-016-5190-3

42.  Márquez-García A. et al. 2016. Is Juvenile hormone a potential mechanism that underlay the "branched Y-model"? General and Comparative Endocrinology. 230-231:170-176. https://doi.org/10.1016/j.ygcen.2016.03.027

41.  Contreras-Garduño J. et al. 2016. Insect Immune Priming: Ecology and Experimental Evidences. Ecological Entomology. 41(4): 351–366. https://doi.org/10.1111/een.12300

40.  Contreras-Garduño J. et al. 2015. Plasmodium berghei induces priming in Anopheles albimanus independently of bacterial co-infection. Developmental & Comparative Immunology. 52(2):172–181. https://doi.org/10.1016/j.dci.2015.05.004

39.  Enríquez-Vara, J. et al. 2015. Temporal variation in immune components of the white grub Phyllophaga polyphylla (Bates) (Coleoptera: Melolonthidae). Neotropical Entomology. 44(5):466-473. https://doi.org/10.1007/s13744-015-0308-3

38.   Ambriz-Aviña V., Contreras-Garduño J. & Pedraza-Reyes M. 2014. Applications of Flow Cytometry to Characterize Bacterial physiological responses. BioMed Research International. ID 461941. https://doi.org/10.1155/2014/461941

37.    Navat J. et al. 2014. Immune response of Phyllophaga polyphylla larvae is not an effective barrier against Metarhizium pingshaense. Invertebrate Survival Journal. 11(1): 240-246.

36.   Marcinkowska et al. 2014. Cross-cultural variation in men’s preference for sexual dimorphism in women’s faces. Biology Letters. 10: 20130850. http://doi.org/10.1098/rsbl.2013.0850
 
35.    Manjarrez-Silva J., Janczur-Feret M.K. & Contreras-Garduño J. 2014. Sexual size dimorphism, diet and reproduction in the mexican Garter snake Thamnophis eques? Herpetological Conservation and Biology. 9(1):163−169.

34.   Galicia A., Cueva del Castillo R. & Contreras-Garduño J. 2014. Is sexual dimorphism in the immune response of Gryllodes sigillatus related to the quality of diet? ISRN Evolutionary Biology. ID 329736. https://doi.org/10.1155/2014/329736

33.    Contreras-Garduño J., Rodríguez M.C., Rodríguez M.H. y Lanz H. 2014. Cost of immune priming within generations: trade-off between infection and reproduction. Microbes and Infection. 16(3):261-267. https://doi.org/10.1016/j.micinf.2013.11.010

32.   Moore et al. 2013. Cross-cultural variation in women’s preferences for cues to sex- and stress-hormones in male face. Biology Letters. 9(3). 20130050. https://doi.org/10.1098/rsbl.2013.0050

31.    Ruiz-Guzmán et al. 2013. Sexual dimorphism in immune response: Testing the hypothesis in an insect species with two male morphs. Insect Science. 20(5): 620-628. https://doi.org/10.1111/j.1744-7917.2012.01551.x

30.   Villanueva et. al. 2013. In the monarch butterfly the juvenile hormone effect upon immune response depends on the immune marker and is sex dependent. Open Journal of Ecology. 3(1):53-58. https://doi.org/10.4236/oje.2013.31007

29.  Contreras-Garduño J & Canales-Lazcano J. 2013. Secondary sexual traits, immune response, parasites, and pathogens: the importance of studying neotropical insects. In: sexual selection: perspectives and models from the Neotropics. Macedo R. H. & Machado G. (Eds.). Elsevier. doi: 10.1016/B978-0-12-416028-6.00003-7

28.    Enríquez-Vara  et al. 2012. Is survival after pathogen exposure explained by host’s immune strength? A test with two species of white grubs (Coleoptera: Scarabaeidae) exposed to fungal infection. Enviromental Entomology. 41(4):959-965. https://doi.org/10.1603/EN12011

27.    López-Olmos et al. 2012. Role of endonuclease V, Uracil-DNA glycosylase and mismatch repair in Bacillus subtilis DNA base-deamination-induced mutagenesis. Journal of Bacteriology. 194(2):243-252. https://doi.org/10.1128/JB.06082-11

26.   Córdoba-Aguilar et al. 2012. No firm evidence of immunological costs of insect oviposition and copulation: a test with dragonflies. Odonatologica. 41(1):7-15.
 
25.   Contreras-Garduño J., Alonso-Salgado A. & Villanueva G. 2012. Phenoloxidase production: the importance of time after juvenile hormone analogue administration in Hetaerina americana (Fabricius) (Zygoptera: Calopterygidae). Odonatologica. 41:1-6.

24.    Contreras-Garduño J., Córdoba-Aguilar A. & Martínez-Becerril R.I. 2011. The relationship between male wing pigmentation and condition in Erythrodiplax funerea (hagen) (Anisoptera: Libellulidae). Odonatologica. 40(2):89-94.

23.   Contreras-Garduño et al. 2011. Juvenile hormone favors sexually-selected traits but impairs fat reserves and abdomen mass in males and females. Evolutionary Ecology. 25(4):845-856. https://doi.org/10.1007/s10682-010-9438-6

22.   Córdoba-Aguilar et al. 2009. Sexual dimorphism in immunity: a test using insects (Coleoptera, Diptera, Lepidoptera, Odonata). Odonatologica. 38(3):217-234.

21.    Contreras-Garduño J., Osorno J.L., & Macías-García C. 2009. Weight difference threshold during shell selection relates to growth rate in the semi-terrestrial hermit crab Coenobita compressus. Behaviour. 146(12):1601-1614. https://doi.org/10.1163/156853909X463326
 
20.     Córdoba-Aguilar A., Serrano-Meneses M.A., & Contreras-Garduño J. 2009. The Lek Mating System of Hetaerina Damselflies (Insecta: Calopterygidae). Behaviour. 146(2):189-207.   https://doi.org/10.1163/156853909X410739

19.    Contreras-Garduño J. et al. 2009. Territorial behaviour and immunity are mediated by juvenile hormone: the physiological basis of honest signalling? Functional Ecology. 23(1):157-163. https://doi.org/10.1111/j.1365-2435.2008.01485.x

18.     Contreras-Garduño J. et al. 2009. Spatial and temporal population differences in male density and condition in the American rubyspot, Hetaerina americana (Insecta: Calopterygidae). Ecological Research. 24(1):21–29. https://doi.org/10.1007/s11284-008-0476-2

17.    Contreras-Garduño J., Córdoba Aguilar A., Peretti A. & Drummond H. 2009. Selección Sexual. In: Evolución Biológica. Morrone J.J. & Magaña P. (eds.). Universidad Nacional Autónoma de México.

16.    Aebi et al. 2008. The potential of native parasitoids for the control of mexican bean beetles: A genetic and ecological approach. Biological Control. 47(3):289-297. https://doi.org/10.1016/j.biocontrol.2008.07.019
 
15.    Contreras-Garduño et al. 2008. The size of the red wing spot of the American rubyspot as a heightened condition-dependent ornament. Behavioral Ecology. 19(4):724-732.   https://doi.org/10.1093/beheco/arn026
 
14.    Contreras-Garduño et al. 2008. Differences in immune ability do not correlate with parasitic burden in two Zigoptera species (Calopterygidae, Coenagrionidae). Odonatologica 37(2):111-118.
                                                                                        
13.    Contreras-Garduño et al. 2007. Wing color properties do not reflect male condition in the American rubyspot (Hetaerina americana). Ethology 113(10):944-952. https://doi.org/10.1111/j.1439-0310.2007.01402.x
 
12.    Contreras-Garduño et al. 2007. Male-male competition and female behavior as determinants of male mating success in the semi-terrestrial hermit crab Coenobita compressus (H. Milne Edwards). Journal of Crustacean Biology 27(3): 411-416. https://doi.org/10.1651/S-2684.1
 
11.     Contreras-Garduño et al. 2007. The expression of a sexually selected trait correlates with different immune defense components and survival in males of the American rubyspot. Journal of Insect Physiology 53(6): 612-621. https://doi.org/10.1016/j.jinsphys.2007.03.003

10.    Contreras-Garduño J. & Córdoba-Aguilar A. 2006. Sexual selection in hermit crabs: a review and outlines for future research. Journal of Zoology 270(4):595-605. https://doi.org/10.1111/j.1469-7998.2006.00182.x

9.     Contreras-Garduño J., Canales-Lazcano J. & Córdoba-Aguilar A. 2006. Wing pigmentation, immune ability, fat reserves and territorial status in males of the rubyspot damselfly, Hetaerina americana. Journal of Ethology. 24:165-173. https://doi.org/10.1007/s10164-005-0177-z

8.    Contreras-Garduño J., Peretti A.V. & Córdoba-Aguilar A. 2006. Evidence that mating plug is related to null female mating activity in the scorpion Vaejovis punctatus. Ethology. 112(2):152-163. https://doi.org/10.1111/j.1439-0310.2006.01149.x

7.     Álvarez et al. 2006. Ecological distribution and niche segregation of sibling species: The case of bean beetles, Acanthoscelides obtectus. Say and A. obvelatus Bridwell. Ecological Entomology. 31(6):582-590. https://doi.org/10.1111/j.1365-2311.2006.00817.x

6.    Córdoba-Aguilar et al. 2006. Sexual comparisons in immune ability, survival and parasite intensity in two damselfly species. Journal of Insect Physiology. 52(8):861-869. https://doi.org/10.1016/j.jinsphys.2006.05.008

5.    Córdoba-Aguilar A & Contreras-Garduño J. 2006. Differences in immune ability in forest habitats of varying quality: dragonflies as study models. In: Forests and Dragonflies. Cordero A. (ed.). Pensoft Publishers. Sofia, Rusia pags 269-278.

4.    Osorno J.L., Contreras-Garduño J. & Macías-García C. 2005. Long-term costs of using heavy shells in terrestrial hermit crabs and the limit of a shell preference: an experimental study. Journal of Zoology. 266(4):377-383. https://doi.org/10.1017/S0952836905007028

3.    Canales-Lazcano J., Contreras-Garduño J. & Córdoba-Aguilar A. 2005. Fitness-related attributes and gregarine burden in a non territorial damselfly Enallagma praevarum Hagen (Zigoptera: Coenagrionidae). Odonatologica. 34(2): 123-130.

2.    Córdoba-Aguilar A. & Contreras-Garduño J. 2003. Sexual Conflict. Trends in Ecology and Evolution. 18(9):439-440. https://doi.org/10.1016/S0169-5347(03)00182-4

1.    Contreras-Garduño et al. 2003. Thamnophis scalaris (Mexican Alpine Blotched Garter Snake). Little Size. Herpetological Review. 32:110. 

bottom of page