Cover.jpg

 

 

78. Galicia-Mendoza et al. (In press).  Biology of the oldest butterfly species in the world, Baronia brevicornis: food, abundance, polymorphism and survival. Revista Mexicana de Biodiversidad.

77. Luoto et al. (In press). Socieconomic position, immune function, and its physiological markers. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2021.105202

76. Sorokowska et al. (In press). Affective international touch in close relationships: A cross-cultural perspective. Personality and Social Psychology Bulletin. https://doi.org/10.1177/0146167220988373

75. Méndez-López et al. 2021. Do entomopathogenic nematodes induce immune priming? Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2021.104844

74.   Lara-Reyes et al. 2021. Insect immune evasion by dauer and non-dauer entomopatogenic nematodes. Journal of Parasitology. 107: 115-124. https://doi.org/10.1645/20-61

73.    Borráz-León et al. 2021. Toxoplasma gondii and psychopathology: Latent infection is associated with interpersonal sensitivity, psychoticism, and higher testosterone levels in men, but not in women. Adaptive Human Behavior and Physiology. 7: 28-42. https://doi.org/10.1007/s40750-020-00160-2

72.    Ruiz-Guzman et al. 2021. Interactions between oxidative stress and attractiveness to mates and individual mate choice in the beetle Tenebrio molitor. Ethology.  127: 109-116https://doi.org/10.1111/eth.13108

71.    Krams. et al. 2021. Spider odors induce stoichiometric changes in fruit fly Drosophila melanogaster. Current Zoology. 67: 127-129. https://doi.org/10.1093/cz/zoaa070 

70.    Rantala et al. 2020. Effect of Juvenile Hormone on resistance against entomopathogenic Fungus Metharizium robertsii differs between sexes. Journal of Fungi. 6: 298. 10.3390/jof6040298 

69.   Sorokowski et al. 2020. Universality of the Triangular Theory of Love: Adaptation and Psychometric Properties of the Triangular Love Scale in 25 Countries. Journal of Sex Research. 58: 106-115. https://doi.org/10.1080/00224499.2020.1787318

68.    Rubika A. et al. 2020. Womens Socioeconomic Position in Ontogeny is Associated with improved immune function and lover stress, but not height. Scientific Reports. https://doi.org/10.1038/s41598-020-68217-6

67. Krams et al. 2020. Developmental speed affects ecological stoichiometry and adult fat reserves in Drosophila melanogaster. Animal Biology. 71: 1-20. https://doi.org/10.1163/15707563-bja10043

66.    Nicoletti M. et al. 2020. Physiological costs in monarch butterflies due to forest cover and visitors. Ecological Indicators 117. https://doi.org/10.1016/j.ecolind.2020.106592

                                              

65.    Kowal et al. 2020. Reasons for Facebook Usage: Data From 46 Countries. Frontiers in Psychology 11.711. https://doi.org/10.3389/fpsyg.2020.00711

64.    Walter et al. 2020. Sex Differences in Mate Preferences Across 45 Countries: A Large-Scale Replication. Psychological Science. 31: 408-423. https://doi.org/10.1177/0956797620904154

63.    Juárez-Hernández et. al. 2020. Hidden Costs in the Physiology of Argia anceps (Zygoptera: Coenagrionidae) due to Pollution. Neotropical Entomology. 49: 227-233. https://doi.org/10.1007/s13744-019-00737-x

62.    Contreras-Garduño et al. 2019. The cost of immune priming within generations. The Science of Nature. 106: 59. https://doi.org/10.1007/s00114-019-1657-2

61.    Conroy-Beam et. al. 2019. Contrasting computational Models of Mate preference integration Across 45 Countries. Scientific reports, 9:16885. https://doi.org/10.1038/s41598-019-52748-8

60.    Borráz-León J. et al. 2019. Low intrasexual competitiveness and decreasing testosterone in human males (Homo sapiens): The adaptive meaning. Behaviour. 157(1): 1-15.   https://doi.org/10.1163/1568539X-00003578

59.    Dean-Conroy et al. 2019. Assortative mating and the evolution of desirability covariation. Evolution and Human Evolution. 40(5):479-491. https://doi.org/10.1016/j.evolhumbehav.2019.06.003

58.    Martínez-Lendech N. et al. 2019. Does juvenile hormone prompt males to oxidative stress? Journal of Experimental Biology. 222. https://doi.org/10.1242/jeb.194530

57.    Trakimas et al. 2019. Ecological Stoichiometry: A Link Between Developmental Speed and Physiological Stress in an Omnivorous Insect. Frontiers In Behavioral Neuroscience.  13:42. https://doi.org/10.3389/fnbeh.2019.00042

56.    Marcinkowska U. et al. 2019. Women’s preferences for men’s facial masculinity are strongest under favorable ecological conditions. Scientific Reports. 9:3387. https://doi.org/10.1038/s41598-019-39350-8

55.    Medina Gómez H. et al. 2018. Pathogen-produced catalase affects immune priming: A potential pathogen strategy. Microbial Pathogenesis. 125: 93-95. https://doi.org/10.1016/j.micpath.2018.09.012

 

54.    Canales-Lazcano J., Contreras-Garduño J. & Cordero C. 2019. Strategic adjustment of copulatory plug size in a nematode. Current Zoology. 65(5):571-577. https://doi.org/10.1093/cz/zoy067

53.    Lanz H. & Contreras-Garduño J. 2018. Insect innate immune memory. En Advances in Comparative Immunology. Ed.: Edwin Cooper. Springer. pags: 193-211. doi: 10.1007/978-3-319-76768-0_9

52.    Medina Gómez H. et al. 2018. The occurrence of immune priming can be species-specific in entomopathogens. Microbial Pathogenesis. 118: 361-364. https://doi.org/10.1016/j.micpath.2018.03.063


51.    Martínez-Lendech N.,  Golab, M.,  Osorio-Beristain M. & Contreras-Garduño,  J. 2018. Sexual signals reveal males’ oxidative stress defenses: testing the hypothesis in an invertebrate. Functional Ecology.  32(4): 937-947. https://doi.org/10.1111/1365-2435.13051


50.    Krams I. et al. 2017. Food quality affects the expression of antimicrobial peptide genes upon simulated parasite attack in the larvae of greater wax moth. Entomologia Experimentalis et Applicata. 165(2-3):  129-137. https://doi.org/10.1111/eea.12629

49.    Krams I. et al. 2017. Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. Journal of Experimental Biology. 220: 4204-4212. https://doi.org/10.1242/jeb.169227

48.    Castro-Vargas C. et al. 2017. Methylation on RNA: a potential mechanism related to immune priming within but not across generations. Frontiers in Microbiology. 8, 473. https://doi.org/10.3389/fmicb.2017.00473

47.    Arriaga-Osnaya B. et al. 2017. Are body size and volatile blends honest signals in orchid bees? Ecology and Evolution. 7(9): 3037–3045. https://doi.org/10.1002/ece3.2903

 

46.    Golab M.J. et al. 2017. The effects of habitat deterioration and social status on patrolling behavior in the territorial damselfly Calopteryx splenden. Polish Journal of Ecology. 65(1):122-131. https://doi.org/10.3161/15052249PJE2017.65.1.011

45.    Ruiz Guzman G. et al. 2016. Costs and benefits of vertical and horizontal transmission of Dengue virus by Aedes aegypti. Journal of Experimental Biology. 219: 3665-3669. https://doi.org/10.1242/jeb.145102

44.  Covarrubias-Camarillo T. et al. 2016. Baronia brevicornis caterpillars build shelters to avoid predation. Journal of Natural History. 50(35-36): 2299-2310. https://doi.org/10.1080/00222933.2016.1193640

43.  Jiménez-Cortés J.G. et al. 2016. Microbiota from Rhabditis regina may alter nematode enthomopathogenicity. Parasitology Research. 115(11): 4153-4165. https://doi.org/10.1007/s00436-016-5190-3

42.  Márquez-García A. et al. 2016. Is Juvenile hormone a potential mechanism that underlay the "branched Y-model"? General and Comparative Endocrinology. 230-231:170-176. https://doi.org/10.1016/j.ygcen.2016.03.027

41.  Contreras-Garduño J. et al. 2016. Insect Immune Priming: Ecology and Experimental Evidences. Ecological Entomology. 41(4): 351–366. https://doi.org/10.1111/een.12300

40.  Contreras-Garduño J. et al. 2015. Plasmodium berghei induces priming in Anopheles albimanus independently of bacterial co-infection. Developmental & Comparative Immunology. 52(2):172–181. https://doi.org/10.1016/j.dci.2015.05.004

39.  Enríquez-Vara, J. et al. 2015. Temporal variation in immune components of the white grub Phyllophaga polyphylla (Bates) (Coleoptera: Melolonthidae). Neotropical Entomology. 44(5):466-473. https://doi.org/10.1007/s13744-015-0308-3

38.   Ambriz-Aviña V., Contreras-Garduño J. & Pedraza-Reyes M. 2014. Applications of Flow Cytometry to Characterize Bacterial physiological responses. BioMed Research International. ID 461941. https://doi.org/10.1155/2014/461941

37.    Navat J. et al. 2014. Immune response of Phyllophaga polyphylla larvae is not an effective barrier against Metarhizium pingshaense. Invertebrate Survival Journal. 11(1): 240-246.

36.   Marcinkowska et al. 2014. Cross-cultural variation in men’s preference for sexual dimorphism in women’s faces. Biology Letters. 10: 20130850. http://doi.org/10.1098/rsbl.2013.0850

 

35.    Manjarrez-Silva J., Janczur-Feret M.K. & Contreras-Garduño J. 2014. Sexual size dimorphism, diet and reproduction in the mexican Garter snake Thamnophis eques? Herpetological Conservation and Biology. 9(1):163−169.

34.   Galicia A., Cueva del Castillo R. & Contreras-Garduño J. 2014. Is sexual dimorphism in the immune response of Gryllodes sigillatus related to the quality of diet? ISRN Evolutionary Biology. ID 329736. https://doi.org/10.1155/2014/329736

33.    Contreras-Garduño J., Rodríguez M.C., Rodríguez M.H. y Lanz H. 2014. Cost of immune priming within generations: trade-off between infection and reproduction. Microbes and Infection. 16(3):261-267. https://doi.org/10.1016/j.micinf.2013.11.010

32.   Moore et al. 2013. Cross-cultural variation in women’s preferences for cues to sex- and stress-hormones in male face. Biology Letters. 9(3). 20130050. https://doi.org/10.1098/rsbl.2013.0050

31.    Ruiz-Guzmán et al. 2013. Sexual dimorphism in immune response: Testing the hypothesis in an insect species with two male morphs. Insect Science. 20(5): 620-628. https://doi.org/10.1111/j.1744-7917.2012.01551.x

30.   Villanueva et. al. 2013. In the monarch butterfly the juvenile hormone effect upon immune response depends on the immune marker and is sex dependent. Open Journal of Ecology. 3(1):53-58. https://doi.org/10.4236/oje.2013.31007

29.  Contreras-Garduño J & Canales-Lazcano J. 2013. Secondary sexual traits, immune response, parasites, and pathogens: the importance of studying neotropical insects. In: sexual selection: perspectives and models from the Neotropics. Macedo R. H. & Machado G. (Eds.). Elsevier. doi: 10.1016/B978-0-12-416028-6.00003-7

28.    Enríquez-Vara  et al. 2012. Is survival after pathogen exposure explained by host’s immune strength? A test with two species of white grubs (Coleoptera: Scarabaeidae) exposed to fungal infection. Enviromental Entomology. 41(4):959-965. https://doi.org/10.1603/EN12011

27.    López-Olmos et al. 2012. Role of endonuclease V, Uracil-DNA glycosylase and mismatch repair in Bacillus subtilis DNA base-deamination-induced mutagenesis. Journal of Bacteriology. 194(2):243-252. https://doi.org/10.1128/JB.06082-11

26.   Córdoba-Aguilar et al. 2012. No firm evidence of immunological costs of insect oviposition and copulation: a test with dragonflies. Odonatologica. 41(1):7-15.

 

25.   Contreras-Garduño J., Alonso-Salgado A. & Villanueva G. 2012. Phenoloxidase production: the importance of time after juvenile hormone analogue administration in Hetaerina americana (Fabricius) (Zygoptera: Calopterygidae). Odonatologica. 41:1-6.

24.    Contreras-Garduño J., Córdoba-Aguilar A. & Martínez-Becerril R.I. 2011. The relationship between male wing pigmentation and condition in Erythrodiplax funerea (hagen) (Anisoptera: Libellulidae). Odonatologica. 40(2):89-94.

23.   Contreras-Garduño et al. 2011. Juvenile hormone favors sexually-selected traits but impairs fat reserves and abdomen mass in males and females. Evolutionary Ecology. 25(4):845-856. https://doi.org/10.1007/s10682-010-9438-6

22.   Córdoba-Aguilar et al. 2009. Sexual dimorphism in immunity: a test using insects (Coleoptera, Diptera, Lepidoptera, Odonata). Odonatologica. 38(3):217-234.

21.    Contreras-Garduño J., Osorno J.L., & Macías-García C. 2009. Weight difference threshold during shell selection relates to growth rate in the semi-terrestrial hermit crab Coenobita compressus. Behaviour. 146(12):1601-1614. https://doi.org/10.1163/156853909X463326

 

20.     Córdoba-Aguilar A., Serrano-Meneses M.A., & Contreras-Garduño J. 2009. The Lek Mating System of Hetaerina Damselflies (Insecta: Calopterygidae). Behaviour. 146(2):189-207.   https://doi.org/10.1163/156853909X410739

19.    Contreras-Garduño J. et al. 2009. Territorial behaviour and immunity are mediated by juvenile hormone: the physiological basis of honest signalling? Functional Ecology. 23(1):157-163. https://doi.org/10.1111/j.1365-2435.2008.01485.x

18.     Contreras-Garduño J. et al. 2009. Spatial and temporal population differences in male density and condition in the American rubyspot, Hetaerina americana (Insecta: Calopterygidae). Ecological Research. 24(1):21–29. https://doi.org/10.1007/s11284-008-0476-2

17.    Contreras-Garduño J., Córdoba Aguilar A., Peretti A. & Drummond H. 2009. Selección Sexual. In: Evolución Biológica. Morrone J.J. & Magaña P. (eds.). Universidad Nacional Autónoma de México.

16.    Aebi et al. 2008. The potential of native parasitoids for the control of mexican bean beetles: A genetic and ecological approach. Biological Control. 47(3):289-297. https://doi.org/10.1016/j.biocontrol.2008.07.019

 

15.    Contreras-Garduño et al. 2008. The size of the red wing spot of the American rubyspot as a heightened condition-dependent ornament. Behavioral Ecology. 19(4):724-732.   https://doi.org/10.1093/beheco/arn026

 

14.    Contreras-Garduño et al. 2008. Differences in immune ability do not correlate with parasitic burden in two Zigoptera species (Calopterygidae, Coenagrionidae). Odonatologica 37(2):111-118.

                                                                                        

13.    Contreras-Garduño et al. 2007. Wing color properties do not reflect male condition in the American rubyspot (Hetaerina americana). Ethology 113(10):944-952. https://doi.org/10.1111/j.1439-0310.2007.01402.x

 

12.    Contreras-Garduño et al. 2007. Male-male competition and female behavior as determinants of male mating success in the semi-terrestrial hermit crab Coenobita compressus (H. Milne Edwards). Journal of Crustacean Biology 27(3): 411-416. https://doi.org/10.1651/S-2684.1

 

11.     Contreras-Garduño et al. 2007. The expression of a sexually selected trait correlates with different immune defense components and survival in males of the American rubyspot. Journal of Insect Physiology 53(6): 612-621. https://doi.org/10.1016/j.jinsphys.2007.03.003

10.    Contreras-Garduño J. & Córdoba-Aguilar A. 2006. Sexual selection in hermit crabs: a review and outlines for future research. Journal of Zoology 270(4):595-605. https://doi.org/10.1111/j.1469-7998.2006.00182.x

9.     Contreras-Garduño J., Canales-Lazcano J. & Córdoba-Aguilar A. 2006. Wing pigmentation, immune ability, fat reserves and territorial status in males of the rubyspot damselfly, Hetaerina americana. Journal of Ethology. 24:165-173. https://doi.org/10.1007/s10164-005-0177-z

8.    Contreras-Garduño J., Peretti A.V. & Córdoba-Aguilar A. 2006. Evidence that mating plug is related to null female mating activity in the scorpion Vaejovis punctatus. Ethology. 112(2):152-163. https://doi.org/10.1111/j.1439-0310.2006.01149.x

7.     Álvarez et al. 2006. Ecological distribution and niche segregation of sibling species: The case of bean beetles, Acanthoscelides obtectus. Say and A. obvelatus Bridwell. Ecological Entomology. 31(6):582-590. https://doi.org/10.1111/j.1365-2311.2006.00817.x

6.    Córdoba-Aguilar et al. 2006. Sexual comparisons in immune ability, survival and parasite intensity in two damselfly species. Journal of Insect Physiology. 52(8):861-869. https://doi.org/10.1016/j.jinsphys.2006.05.008

5.    Córdoba-Aguilar A & Contreras-Garduño J. 2006. Differences in immune ability in forest habitats of varying quality: dragonflies as study models. In: Forests and Dragonflies. Cordero A. (ed.). Pensoft Publishers. Sofia, Rusia pags 269-278.

4.    Osorno J.L., Contreras-Garduño J. & Macías-García C. 2005. Long-term costs of using heavy shells in terrestrial hermit crabs and the limit of a shell preference: an experimental study. Journal of Zoology. 266(4):377-383. https://doi.org/10.1017/S0952836905007028

3.    Canales-Lazcano J., Contreras-Garduño J. & Córdoba-Aguilar A. 2005. Fitness-related attributes and gregarine burden in a non territorial damselfly Enallagma praevarum Hagen (Zigoptera: Coenagrionidae). Odonatologica. 34(2): 123-130.

2.    Córdoba-Aguilar A. & Contreras-Garduño J. 2003. Sexual Conflict. Trends in Ecology and Evolution. 18(9):439-440. https://doi.org/10.1016/S0169-5347(03)00182-4

1.    Contreras-Garduño et al. 2003. Thamnophis scalaris (Mexican Alpine Blotched Garter Snake). Little Size. Herpetological Review. 32:110.